Juechun Tang[†]

INTRODUCTION

Dynamics in chemical reaction networks (CRNs) are of central importance for understanding various phenomena including explosion, catalysis, and biological systems.

CRN Formulation

 $\dot{\mathbf{Y}}_{\mathbf{i}}(t) = \frac{d \mathbf{Y}_{\mathbf{i}}}{dt} = \sum_{i} \mathbf{w}_{\mathbf{i},\mathbf{j}} = \mathbf{f}(\mathbf{Y}_{\mathbf{i}}, \mathbf{k}_{\mathbf{j}}) \qquad \mathbf{i} \in \mathbf{S},$

Y: species concentrations k_i: reaction rate constant **R**: a set of reactions

S: a set of chemical species

<u>CRN Reconstruction</u>: $\mathbf{k} = \mathscr{F}(\mathbf{S}, \mathbf{R}, \mathbf{Y}_{i}^{*}(\mathbf{t}^{*}))$ Given experimental species temporal profiles as $\mathbf{Y}_{i}^{*}(\mathbf{t}^{*})$, can we determine the rate constants k?

Limitations of Current Methods: manual fitting; complex numerical integration; much prior knowledge.

Why Machine Learning?: More efficient than numerical integration; May provide a distribution of inferred rate constants.

Our Goal: Apply machine learning techniques to reconstruct chemical reaction networks from discrete experimental data, facilitating research in complex chemical kinetics.

METHODS AND APPROACH

Adaptive Gradient Matching with Gaussian Process [2]

LEARNING-BASED RECONSTRUCTION OF CHEMICAL REACTION NETWORKS

Hongtao Zhong[‡] [†]Dept of Chemical and Biological Engineering [‡]Dept of Mechanical and Aerospace Engineering

$$j \in \mathbf{R}$$

$$\phi_{n}, \sigma_{n}$$
) = N (m_n, p_n)

CASE 1: ATMOSPHERIC O₂-O₃-O KINETICS

$O_2 - O_3 - O$ kineti	lcs is ar	n indispen	sab
chemistry [1]. The 1	reduce	d mechan	ism
$O_2 \xrightarrow{h\nu} O_2 + O_2$	(R1)	$O \cdot + O_2$	>
$O_3 \xrightarrow{h\nu} O_2 + O_2$	(R3)	$O_3 + O \cdot$	>

Model Performance and Rate Constant Distribution:

CASE 2: BIOCHEMICAL KINETIC OSCILLATION

We demonstrate the parameter learning process with a real 22hperiod circadian oscillator found in cyanobacteria [4].

Model Performance with Inferred Rate Constants :

REFERENCES

[1] L. Barrie, J. Bottenheim, R. Schnell, P. Crutzen, and R. Rasmussen. Ozone destruction and photochemical reactions at polar sunrise in the lower arctic atmosphere. Nature, 334(6178):138, 1988. [2] B. Calderhead, M. Girolami, and N. D. Lawrence. Accelerating bayesian inference over nonlinear differential equations with gaussian processes. In Advances in neural information processing systems, pages 217–224, 2009. [3] H. Ling, S. Samarasinghe, and D. Kulasiri. Novel recurrent neural network for modelling biological networks: oscillatory p53 interaction dynamics. Biosystems, 114(3):191–205, 2013. [4] M. Rust, J. Markson, W. Lane, D. Fisher, and E. O'shea. Ordered phosphorylation governs oscillation of a three-protein circadian clock. Science, 318(5851):809–812, 2007.

ble component of atmospheric is written as

- ► O₃ (R2)
- $\rightarrow O_2 + O_2$ (R4)

Chemical reaction networks are intrinsically large-scale. Here we present RNN reconstruction of a H_2-O_2 combustion mechanism with 14 reactions.

Model Performance with Inferred Rate Constants:

	Reactions	k	Initial ϵ	RNN ϵ
1	$H_2 + OH \longrightarrow H_2O + H$	1.3×10^{-12}	0.39	0.02
2	$O + H_2O \longrightarrow OH + OH$	1.0×10^{-13}	0.30	0.36
3	$HO_2 + OH \longrightarrow H_2O + O_2$	4.0×10^{-11}	1.90	1.91
•••	• • •	• • •	••	• • •
14	$H_2O_2 + H \longrightarrow HO_2 + H_2$	1.0×10^{-12}	0.32	0.02

k (cm³/molecule s) retrived from NIST chemical kinetics database. ϵ is the deviation from the true rate constants defined as $\|(k - k_{true})/k_{true}\|$

SUMMARY AND CONCLUSION

Conclusion

- scale systems

Discussion and Extensions

- cable and interesting

CASE 3: TOWARDS LARGE-SCALE KINETICS

• RNN best reserves the system dynamics from small to large-

• Lin-Reg (with poly-terms) performs best in simple kinetics but fails to capture nonlinear dynamics in real systems

• This study is limited to a fully observed system. CRN reconstruction from a partial observed system would be more appli-

• Rate constants are assumed to be constant in this work. In reality, there is a strong nonlinear dependence between rate constants and temperature, pressure, etc.

• Large stiffness is a distinctive feature of CRNs. Rate constants may vary up to several orders of magnitudes. Model reduction is necessary before any learning-based reconstruction.