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INTRODUCTION

Dynamics in chemical reaction networks (CRNs) are of central
importance for understanding various phenomena including explo-
sion, catalysis, and biological systems.

CRN Formulation

Ẏi(t) =
dYi

dt
=

∑
j

wi,j = f(Yi,kj) i ∈ S, j ∈ R

Y: species concentrations S: a set of chemical species
kj: reaction rate constant R: a set of reactions

CRN Reconstruction: k = F (S,R,Y∗
i (t

∗))
Given experimental species temporal profiles as Y∗

i (t
∗), can we de-

termine the rate constants k ?
Limitations of Current Methods: manual fitting; complex numerical
integration; much prior knowledge.
Why Machine Learning?: More efficient than numerical integration;
May provide a distribution of inferred rate constants.

Our Goal: Apply machine learning techniques to reconstruct chem-
ical reaction networks from discrete experimental data, facilitating
research in complex chemical kinetics.

METHODS AND APPROACH

Adaptive Gradient Matching with Gaussian Process [2]

Recurrent Neural Net [3]

CASE 1: ATMOSPHERIC O2-O3-O KINETICS

O2 - O3 - O kinetics is an indispensable component of atmospheric
chemistry [1]. The reduced mechanism is written as
O2

hν O· + O· (R1) O· + O2 O3 (R2)
O3

hν O2 + O· (R3) O3 + O· O2 + O2 (R4)

Model Performance and Rate Constant Distribution:

CASE 2: BIOCHEMICAL KINETIC OSCILLATION

We demonstrate the parameter learning process with a real 22h-
period circadian oscillator found in cyanobacteria [4].

Model Performance with Inferred Rate Constants :

CASE 3: TOWARDS LARGE-SCALE KINETICS

Chemical reaction networks are intrinsically large-scale. Here
we present RNN reconstruction of a H2 O2 combustion mechanism
with 14 reactions.

Model Performance with Inferred Rate Constants:
Reactions k Initial ε RNN ε

1 H2 + OH H2O + H 1.3 ×10−12 0.39 0.02
2 O + H2O OH + OH 1.0 ×10−13 0.30 0.36
3 HO2 + OH H2O + O2 4.0 ×10−11 1.90 1.91
... ... ... .. ...
14 H2O2 + H HO2 + H2 1.0 ×10−12 0.32 0.02

k (cm3/molecule s) retrived from NIST chemical kinetics database. ε is the
deviation from the true rate constants defined as ‖(k− ktrue)/ktrue‖

SUMMARY AND CONCLUSION

Conclusion

• RNN best reserves the system dynamics from small to large-
scale systems

• Lin-Reg (with poly-terms) performs best in simple kinetics but
fails to capture nonlinear dynamics in real systems

Discussion and Extensions

• This study is limited to a fully observed system. CRN recon-
struction from a partial observed system would be more appli-
cable and interesting

• Rate constants are assumed to be constant in this work. In re-
ality, there is a strong nonlinear dependence between rate con-
stants and temperature, pressure, etc.

• Large stiffness is a distinctive feature of CRNs. Rate constants
may vary up to several orders of magnitudes. Model reduction
is necessary before any learning-based reconstruction.
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